UEB estimation from Sentinels: The URBANFLUXES Project

Nektarios Chrysoulakis, FORTH
http://urbanfluxes.eu
Introduction
Urban Energy Balance

\[Q^* + Q_F = Q_H + Q_E + \Delta Q_S + \Delta Q_A + S \]

- \(Q^* \): Net all-wave radiation balance
- \(Q_F \): Anthropogenic heat flux
- \(Q_H \): Turbulent sensible heat flux
- \(Q_E \): Turbulent latent heat flux
- \(\Delta Q_S \): Net change in heat storage
- \(\Delta Q_A = Q_{in} - Q_{out} \): Adveotive heat flux
- \(S \): All other sources and sinks
Why URBANFLUXES?

- **EO-1-2014:** **New ideas** for Earth-relevant space applications
- **Urban planning** and **Earth System Science** communities need spatially disaggregated Q_F.
- **Not possible** to derive it by *in-situ* flux measurements.
- **Challenge:** the estimation of Q_F spatial patterns by current EO systems.
- **Major challenge:** the innovative exploitation of the Copernicus Sentinels synergistic observations to estimate Q_F spatiotemporal patterns.
The objectives

- to exploit EO to **improve the accuracy** of Q^* and ΔQ_s calculation;
- to improve EO-based methods to **estimate** Q_H and Q_E and to **validate** them using flux measurement by EC, or scintillometry;
- to employ **energy budget closure** to estimate Q_F spatial patterns at city scale and local scale;
- to specify and analyse the **uncertainties**;
- to **evaluate** the products comparing with independent methods;
- To exploit **Sentinels 2/3 synergies** to retrieve UEB fluxes at the local scale, with the frequency of Sentinel 3 acquisitions.
The approach
In-situ observations

Wireless Sensors Networks:
High spatial resolution measurements of:
- Surface temperature
- Soil moisture/temperature
- Air temperature
- Relative humidity
- Wind vector
In-situ observations

- Flux measurements:
 - Independent for Q_E and Q_H
 - Eddy covariance from flux towers
 - Large-aperture scintillometers
In-situ observations
Local Climate Zones

LCZ3 – Compact low rise
High angle
Low level

LCZ6 – Open low rise
High angle
Low level
Urban morphology

- **Relevant parameters**: Sky View Factor (SVF), Building and vegetation heights (z_H, $z_{H(SD)}$, $z_{H(max)}$), Plan area index (λ_P), Frontal area index (λ_F), Canyon aspect ratio (λ_s).

Digital surface model (DSM) of Basel

Building density of Basel based on GUF data (100 m grid)
Urban surface characteristics
Urban surface temperature

- High Resolution VNIR, SWIR
- Low Resolution TIR
- Surface Characterization
- Spatial-spectral unmixing of TIR bands
- Surface cover abundances
- High Resolution Emissivity
- High Resolution TIR
- Atmospheric information
- High spatial resolution LST
Urban surface temperature
Urban surface albedo

- **DART** simulates surface multispectral reflectance $\rho_{\text{DART}}(\lambda, x, y)$ and shortwave albedo $a_{\text{DART}}(x, y)$ for any satellite acquisition (date: t_{sat}; viewing geometry: Ω_v; and atmospheric conditions: AOT, PW).

- Simulated images are resampled to satellite resolution ($x_{\text{sat}}, y_{\text{sat}}$).

- The resampled reflectance image $\rho_{\text{DART}}(\lambda, x_{\text{sat}}, y_{\text{sat}})$ is calibrated with the atmospherically corrected satellite image $\rho_{\text{sat}}(\lambda, x_{\text{sat}}, y_{\text{sat}})$:

$$K(\lambda, x_{\text{sat}}, y_{\text{sat}}, t_{\text{sat}}) = \frac{\rho_{\text{sat}}(\lambda, x_{\text{sat}}, y_{\text{sat}}, t_{\text{sat}}, \Omega_s, \Omega_v, \text{AOT, PW})}{\rho_{\text{DART}}(\lambda, x_{\text{sat}}, y_{\text{sat}}, t_{\text{sat}}, \Omega_s, \Omega_v, \text{AOT, PW})}$$

- Calibration of $a_{\text{DART}}(x_{\text{sat}}, y_{\text{sat}})$ with $K(\lambda, x_{\text{sat}}, y_{\text{sat}}, t_{\text{sat}})$ to derive the urban surface albedo for the satellite acquisition: $a_{\text{sat}}(x_{\text{sat}}, y_{\text{sat}})$.
Urban surface albedo

- Application for Landsat:

 - DSM
 - Landsat radiance
 - K coefficient
 - Landsat albedo
Radiation balance (Q^*)

DART: color composite reflectance image

Urban canyon

DARTEB: hourly wall temperature
Heat storage change (ΔQₛ)

ESTM (Element Surface Temperature Method):

- Based on facet areas.
- Incorporates heat transfer through the different elements.
- Estimated ΔQₛ represents unit plan area.

\[
ΔQₛ = \sum_i \frac{ΔT_i}{Δt} (\rho C)_i Δx_i λ_{pi}
\]

\[
\rho C \frac{∂T}{∂t} = - \frac{∂Q}{∂x} = - \frac{∂}{∂x} \left(-k \frac{∂T}{∂x} \right)
\]

Input data
- Materials
 - Thermal conductivity
 - Volumetric heat capacity
- Physical arrangement of elements
 - View factors between elements
- Tₛ
- T_air inside and outside
- Soil temperature T_fix (where dT/dz = 0)
Heat storage change (ΔQ_s)
Heat storage change (ΔQ_s)

OHM (Objective Hysteresis Model):

- Contributions to ΔQ_s from multiple surface material types.
- EO-derived dQ^*/dt (e.g. Xu et al., 2008).

$$\Delta Q_s = \sum f_i a_{1,i} Q^* + f_i a_{2,i} \frac{dQ^*}{dt} + f_i a_{3,i}$$

Parameters specific to land cover class
Turbulent Heat Fluxes \((Q_H, Q_E) \)

ARM (Aerodynamic Resistance Method):

\[
Q_H = \rho c_P \frac{T_S - T_{air}}{r_a}
\]

\[
Q_E = \rho c_P \frac{e_s - e_{air}}{\gamma (r_a + r_S)}
\]

- From EO (WP 4 & 5)
- Measured in-situ

- Aerodynamic resistance
- Vapour pressures
- Surface resistance
 - Depends on vegetation type, moisture conditions
Turbulent Heat Fluxes (Q_H, Q_E)

r_{ah}

Q_H
Comparison with non-satellite
The involvement of users

URBANFLUXES research team

Heraklion

London

Basel

Community of Practice

Q_f Product

FORTH

DLR

CESBIO

UoR

UoG

UNIBAS

GEOK

URBANFLUXES END-USERS

SCIENTIFIC COMMUNITY

PLANNING COMMUNITY

ALterra

CoP

EO SCIENTISTS

CLIMATOLOGISTS
Visit URBANFLUXES web-site

- http://urbanfluxes.eu
The vision

- To advance the current knowledge of the impacts of Q_f on UHI and hence on urban climate and energy consumption.

- To support the development of tools and strategies to mitigate these effects, improving thermal comfort and energy efficiency.

- To support the establishment of Sentinels as a tool to help inform policy-making.

- To develop EO-based services.