

→ MAPPING URBAN AREAS FROM SPACE CONFERENCE

UEB estimation from Sentinels: The URBANFLUXES Project

Nektarios Chrysoulakis, FORTH http://urbanfluxes.eu

4–5 November 2015 | ESA–Esrin | Frascati, Rome (Italy)

CESBID

Insuel, dans to have been been

au a

Introduction

Urban Energy Balance

$Q^* + Q_F = Q_H + Q_E + \Delta Q_S + \Delta Q_A + S$

- Q*: Net all-wave radiation balance
- *Q_F*: Anthropogenic heat flux
- Q_{H} : Turbulent sensible heat flux
- Q_E : Turbulent latent heat flux
- ΔQ_s: Net change in heat storage
- $\Delta Q_A = Q_{in} Q_{out}$: Advective heat flux
- S: All other sources and sinks

Why URBANFLUXES?

- EO-1-2014: New ideas for Earthrelevant space applications
- Urban planning and Earth System
 Science communities need spatially disaggregated Q_F.
- Not possible to derive it by *in-situ* flux measurements.
- Challenge: the estimation of Q_F spatial patterns by current EO systems.
- Major challenge: the innovative exploitation of the Copernicus Sentinels synergistic observations to estimate Q_F spatiotemporal patterns.

urban climate • urban energy budget • anthropogenic heat flux • vehicular emissions • heating and cooling of buildings • industrial processing • metabolic heat release by people • heat storage • urban land cover • in-situ measurements • satellite remote sensing • Earth Observation data

The objectives

- to exploit EO to improve the accuracy of Q* and ΔQs calculation;
- to improve EO-based methods to estimate Q_H and Q_E and to validate them using flux measurement by EC, or scintillometry;
- to employ energy budget closure to estimate Q_F spatial patterns at city scale and local scale;
- to specify and analyse the uncertainties;
- to evaluate the products comparing with independent methods;
- To exploit Sentinels 2/3 synergies to retrieve UEB fluxes at the local scale, with the frequency of Sentinel 3 acquisitions.

The approach

In-situ observations

- Wireless Sensors Networks: High spatial resolution measurements of:
 - Surface temperature
 - Soil moisture/temperature
 - Air temperature
 - Relative humidity
 - Wind vector

In-situ observations

- Flux measurements:
 Independent for Q_E and Q_H
 - Eddy covariance from flux towers
 - Large-aperture scintillometers

In-situ observations

Local Climate Zones

Low level

an Cas Mar Has the sile.

Low level

Urban morphology

• **Relevant parameters**: Sky View Factor (*SVF*), Building and vegetation heights ($z_{H'}$, $z_{H(SD)'}$, $z_{H(max)}$), Plan area index (λ_{ρ}), Frontal area index (λ_{F}), Canyon aspect ratio (λ_{s}).

Digital surface model (DSM) of Basel

Building density of Basel based on GUF data (100 m grid)

Urban surface characteristics

esa

Urban surface temperature

esa

Urban surface temperature

Urban surface temperature

esa

Urban surface albedo

- **DART** simulates surface multispectral reflectance $\rho_{DART}(\lambda, x, y)$ and shortwave albedo $\mathbf{a}_{DART}(x, y)$ for any satellite acquisition (date: \mathbf{t}_{sat} ; viewing geometry: Ω_{v} ; and atmospheric conditions: **AOT**, **PW**).
- Simulated images are resampled to satellite resolution (x_{sat}, y_{sat}).
- The resampled reflectance image $\rho_{DART}(\lambda, x_{sat}, y_{sat})$ is calibrated with the atmospherically corrected satellite image $\rho_{sat}(\lambda, x_{sat}, y_{sat})$:

$$\mathsf{K}(\lambda, \mathsf{x}_{\mathsf{sat}}, \mathsf{y}_{\mathsf{sat}}, \mathsf{t}_{\mathsf{sat}}) = \frac{\rho_{sat} (\lambda, \mathsf{x}_{sat}, \mathsf{y}_{sat}, \mathsf{t}_{sat}, \Omega_s, \Omega_v, AOT, PW)}{\rho_{DART} (\lambda, \mathsf{x}_{sat}, \mathsf{y}_{sat}, \mathsf{t}_{sat}, \Omega_s, \Omega_v, AOT, PW)}$$

• Calibration of $\mathbf{a}_{DART}(\mathbf{x}_{sat}, \mathbf{y}_{sat})$ with $K(\lambda, \mathbf{x}_{sat}, \mathbf{y}_{sat}, \mathbf{t}_{sat})$ to derive the urban surface albedo for the satellite acquisition: $\mathbf{a}_{sat}(\mathbf{x}_{sat}, \mathbf{y}_{sat})$.

Urban surface albedo

Radiation balance (Q*)

DART: color composite reflectance image

Heat storage change (ΔQ_s)

ESTM (Element Surface Temperature Method):

- Based on facet areas.
- Incorporates heat transfer through the different elements.
- Estimated ΔQ_s represents unit plan area.

Heat storage change (ΔQ_s)

Heat storage change (ΔQ_s)

esa

OHM (Objective Hysteresis Model):

- Contributions to ΔQ_s from multiple surface material types.
- EO-derived dQ*/dt (e.g. Xu et al.,2008).

Parameters specific to land cover class

Turbulent Heat Fluxes (Q_H, Q_E) **©esa**

ARM (Aerodynamic Resistance Method):

Turbulent Heat Fluxes (Q_H, Q_E) **©esa**

r_{ah}

200

350

50

500

Q_H

Comparison with non-satellite Cesa

The involvement of users

CIST

Visit URBANFLUXES web-site

http://urbanfluxes.eu

Sentinel 2A launched!

The vision

- To advance the current knowledge of the impacts of Q_F on UHI and hence on urban climate and energy consumption.
- To support the development of tools and strategies to mitigate these effects, improving thermal comfort and energy efficiency.
- To support the establishment of Sentinels as a tool to help inform policy-making.

urban

tep

To develop EO-based services.

THE FRAMEWORK PROGRAMME FOR RESEARCH AND INNOVATION

HORIZ ON 2020

ESTM

SVF

Vegetation DEM

SVF:

Vegetation SVF

