Mapping past and current urbanization by means of ESA radar data the SAR4Urban project

MUAS2015 conference | ESA-ESRIN | 4-5 November 2015 Frascati, Italy

M. Marconcini, A. Metz, J. Zeidler, T. Esch

German Aerospace Center (DLR) Earth Observation Center (EOC) German Remote Sensing Data Center (DFD) Land Surface (LAX)

Knowledge for Tomorrow

- More than half of the global human population is living in urban environments;
- Rapid urban growth brings several challenges, including meeting accelerated demand for basic services, infrastructure, and affordable housing (particularly for the nearly 1 billion people living in informal settlements).

- As cities develop, their exposure to climate and disaster risk increases;
- The most affected are the urban poor who tend to live e.g. along river banks and waterfronts in coastal areas on hillsides and slopes prone to landslides;
- → An effective monitoring of urban sprawl is of paramount importance to understand the complexity of urban environments.

• At DLR we generated the **Global Urban Footprint** (GUF), a **mask of built-up areas** derived from TerraSAR-X and TanDEM-X data acquired between 2011 and 2013;

- At DLR we generated the **Global Urban Footprint** (GUF), a **mask of built-up areas** derived from TerraSAR-X and TanDEM-X data acquired between 2011 and 2013;
- SAR data proved extremely effective for mapping urban areas.
- ESA SAR data are available:
 - from 1991 to 2012 (ERS-1/2, ASAR);
 - from 2014 onwards (**S1A**, S1B, S1C, S1D, ...).

SAR4Urban

- **Objective:** mapping past and current urbanization by means of ESA radar imagery.
- SAR4Urban is one of the 12 ESA DUE Innovators III projects;
- **Budget:** 200K;
- Duration: April 2015 March 2017;
- Users:

The World Bank Group;

GEO Global Urban Observation and Information Task for Societal Benefits (GEO SB-04)

Rationale

Given a series of multi-temporal SAR images for a given study area, the **temporal dynamics of urban settlements are sensibly different than those of all other non-urban classes**.

urban areas	\rightarrow	always high backscattering
complex topography areas	\rightarrow	high backscattering (can be masked by properly analyzing the DEM)
other non-urban areas	\rightarrow	lower backscattering (high only under specific conditions)

M. Marconcini (2002) - *Novel Techniques for Classification of Multi-Temporal SAR Images* - Bachelor's Thesis, University of Trento (Trento, Italy).

1. gathering all the multi-temporal images available over the region of interest in the selected time interval;

- 1. gathering all the multi-temporal images available over the region of interest in the selected time interval;
- 2. applying orbit correction, calibration, and terrain correction;

- 1. gathering all the multi-temporal images available over the region of interest in the selected time interval;
- 2. applying orbit correction, calibration, and terrain correction;
- 3. mask pixels associated with very low backscattering values;

S1A IW GRDH VV multitemporal series

20 scenes ascending pass

10m spatial resolution

DLR

- 1. gathering all the multi-temporal images available over the region of interest in the selected time interval;
- 2. applying orbit correction, calibration, and terrain correction;
- 3. mask pixels associated with very low backscattering values;
- 4. extracting for each pixel **key temporal statistics** (e.g., temporal median, mean, variance, standard deviation, mean slope, etc.);

- 1. gathering all the multi-temporal images available over the region of interest in the selected time interval;
- 2. applying orbit correction, calibration, and terrain correction;
- 3. mask pixels associated with very low backscattering values;
- 4. extracting for each pixel key temporal statistics (e.g., temporal median, mean, variance, standard deviation, mean slope, etc.);
- 5. masking areas with complex topography;

High-Resolution SRTM 1 arcsec (~30 m)

High-Resolution SRTM 1 arcsec (~30 m) + topography mask

- 1. gathering all the multi-temporal images available over the region of interest in the selected time interval;
- 2. applying orbit correction, calibration, and terrain correction;
- 3. mask pixels associated with very low backscattering values;
- 4. extracting for each pixel key temporal statistics (e.g., temporal median, mean, variance, standard deviation, mean slope, etc.);
- 5. masking areas with complex topography;
- 6. deriving **heterogeneity features** for the extracted temporal statistics (e.g., index of dispersion, coefficient of variation, etc.);

- 1. gathering all the multi-temporal images available over the region of interest in the selected time interval;
- 2. applying orbit correction, calibration, and terrain correction;
- 3. mask pixels associated with very low backscattering values;
- 4. extracting for each pixel key temporal statistics (e.g., temporal median, mean, variance, standard deviation, mean slope, etc.);
- 5. masking areas with complex topography;
- 6. deriving heterogeneity features for the extracted temporal statistics (e.g., index of dispersion, coefficient of variation, etc.);
- 7. classifying using both temporal and heterogeneity features:
 - Unsupervised Approach;
 - Supervised Approach (for S1A data, training pixels extracted from GUF).

The ASAR WSM pre-processing is supported by the **ESA RESEARCH & SERVICE SUPPORT (RSS)** team via **G-POD**.

In particular, the **entire global archive** is being processed and transferred to DLR via FTP:

- $2009 2012 \rightarrow completed$
- $2002 2008 \rightarrow$ ongoing

First tests are carried out mostly with 2009-2012 data.

ASAR WSM HH **2002-2003**

ASAR WSM HH 2009-2012

ASAR WSM HH **2002-2003**

ASAR WSM HH 2009-2012

2002-2003

2009-2012

ASAR WSM HH 2009-2012

Landsat-8 OLI 2014

ASAR WSM HH 2009-2012 unsupervised classification Landsat-8 OLI 2014 supervised classification

ASAR WSM HH 2009-2012 unsupervised classification

ASAR WSM VV 2009-2012

Landsat-8 OLI 2014 supervised classification

50 km

ASAR WSM VV 2009-2012 unsupervised classification

Landsat-8 OLI 2014 supervised classification

S1A IW GRDH VV 2014-2015 10m spatial resolution 31 scenes

2002-2003

DLR

2009-2012 2002-2003

DLR

ERS-2 PRI & ASAR IMP VV 2002-2003 | 15m spatial resolution | 41 scenes

S1A IW GRDH VV | 10m spatial resolution | 49 scenes

2009-2012 2002-2003

Outlook

- Investigate **sensitivity** with respect to:
 - number of available scenes;
 - polarization;
 - pass;
- Further improving the classification schemes;
- Validation (yet ongoing):
 - validation plan;
 - interaction with local representatives for getting reference data;

STAY TUNED

thanks a lot for your attention

Dr.-Ing. Mattia Marconcini Phone: +49-8153-28-2138 Fax: +49-8153-28-1445 Email: mattia.marconcini@dlr.de