

→ MAPPING URBAN AREAS FROM SPACE CONFERENCE

Automatic Generation of Updated Land Cover Maps at Decametric Spatial Resolution for the whole Italian Territory Using Satellite Data

Konstantina Boutsia¹, Francesco Carbone², Fabio Del Frate¹, Zina Mitraka¹, Giovanni Schiavon¹

¹University of Rome Tor Vergata, Italy

²GEO-K SRL, Italy

4-5 November 2015 | ESA-Esrin | Frascati, Rome (Italy)

Purpose of this work

This study intends to address the following issues:

- Uniform land cover classification at a national level at high resolution (~30m)
- Determine territory morphology with high level of accuracy (>90%)
- Evaluate in a 6 month basis the change of land cover
- Create an automatic process

Methodology

→ MAPPING URBAN AREAS FROM SPACE CONFERENCE 4-5 November 2015 | ESA-Esrin | Frascati, Rome (Italy)

CT-SH2

Elaboration

- The territory was divided in the following "thematic" classes: urban areas, woodlands, water surfaces, other natural areas (bare soil, rock ect)
- It was decided to limit the number of classes to 4 to simplify the automatic classification process making it more robust
- Each tile was classified using a MLP neural network algorithm plus manual correction

Red: urban areas Green: woodlands Blue: water surfaces Yellow: other natural areas

Validation

- For data validation we used Google Earth
- After creating random check points we compare our classification in those points with high resolution images.
- This comparison determines the accuracy of the classification.

Cor	nfu	sic	on M	atrix	
[[:	32	Ø	4	01	
E	Ø	Ø	Ø	01	
E	7	Ø	58	01	
I	3	Ø	Ø	1]]	

Total Points Validated: 105 Classification Accuracy: 86.6666666667 %

Results for Italy 2000

The overall estimated accuracy is of about 93%

Neverbà di Roma

Basilicata

Basilicata		
Classes	Percentage	Km²
Urban surface	0.7	69.94
High vegetation	31.3	3127.496
Water	0.9	89.93
Other natural areas	67.1	6704.632
Tot.	100	9992

Updating classification

 MAPPING URBAN AREAS FROM SPACE CONFERENCE 4–5 November 2015 | ESA–Esrin | Frascati, Rome (Italy)

esa

PCNN

- Automatic detection algorithm
- **Requires no training**
- Unsupervised
- Very sensitive to image context

Schematic representation of a PCNN neuron

→ MAPPING URBAN AREAS FROM SPACE CONFERENCE 4-5 November 2015 | ESA-Esrin | Frascati, Rome (Italy)

Pulse-Coupled Neural Network

(PCNN)

PCNN

- Feeding $F_{ij}[n] = e^{-\alpha_F} \cdot F_{ij}[n-1] + S_{ij} + V_F \sum_{kl} M_{ijkl} Y_{kl}[n-1]$
- Linking: $L_{ij}[n] = e^{-\alpha_L} \cdot L_{ij}[n-1] + V_L \sum_{kl} W_{ijkl} Y_{kl}[n-1]$
- Internal neuron state: $U_{ij}[n] = F_{ij}[n](1 + \beta L_{ij}[n])$
- Threshold: $\theta_{ij}[n] = e^{-\alpha_{\theta}} \cdot \theta_{ij}[n-1] + V_{\theta}Y_{kl}[n]$
- Output pulse: $Y_{ij}[n] = \begin{cases} 1, & \text{if } U_{ij}[n] > \theta_{ij}[n] \\ 0, & \text{otherwise.} \end{cases}$

Time signal

Number of neurons that pulsate during each iteration

Time signal

(b) im2

(d) im1

(j) im1

(h) im1 partly offset (im4)

(k) im1 rotated 45deg

(f) time signal G[n]

(i) time signal G[n]

(1) time signal G[n]

Important PCNN feature: invariance to changes in rotation, scale, shift, or skew of an object within the scene.

PCNN a powerful tool in change detection, where the view angle of the satellite can play an important role!

Change detection in Landsat data CIS 20

Two Landsat 7 datasets: 5 bands in 2004 (17/02/04) and 2010 (01/06/10)

60x60 pixel boxes 30 pixel steps

260 sub-areas

(d) region (4) - 2010

(e) region (4) - 2004

(f) G[n] vs. n

(g) region (6) - 2010

(h) region (6) - 2004

LT5 LE7 273.63944444

(i) G[n] vs. n

Change detection in Landsat data CIS 20

Two Landsat 7 datasets: 5 bands in 2004 (17/02/04) and 2010 (01/06/10)

60x60 pixel boxes 30 pixel steps

260 sub-areas

(d) region (4) - 2010

(e) region (4) - 2004

LT5 LE7 11296.0536111

(f) G[n] vs. n

(g) region (6) - 2010

(h) region (6) - 2004

(i) G[n] vs. n

Merging Landsat bands

Three bands combined

• (band(3) AND band(4)) OR (band(3) and band(2))

Spectral band	Wavelength (μ m)	Resolution (m)
(1) Blue	0.45 - 0.52	30
(2) Green	0.52 - 0.60	30
(3) Red	0.63 - 0.69	30
(4) Near Infrared (NIR)	0.76 - 0.90	30
(5) Mid Infrared (MIR)	1.55 - 1.75	30

21 areas selected (8%)

18 false positives

239 areas correctly purged

Desired map

Merging Landsat & ASAR

We combined the Landsat map with a similar map produced applying the PCNN to 2 ASAR Envisat images obtained in 2004 and 2010

Result: 10 areas selected – 7 false positives (before 18) 60% better performance

Sentinel-1 data

Result of 3 image combination in Feb. 2015 (29/01 – 10/2 – 22/2)

Result of 3 image combination in Sep. 2015 (02/09 – 14/09 – 26/09)

Sentinel-1 data

Zoom in a sample area with the mask superimposed

100x100 pixel boxes

50 pixel steps

1521 sub-areas

413 selected as "changed" by the PCNN

Thus only ~27% of the total area has shown significant change

Sentinel-1 data

Visual inspection of the selected areas

Sep. 2015

- A "Master" reference map with Landsat resolution has been created for the whole Italian territory
- Implemented validation procedures report an accuracy of about 93%
- PCNN is an effective algorithm to focus only on changes from the reference map
- Data fusion analysis has been performed to combine Optical and SAR results from PCNN
- Preliminary results with Sentinel-1 data

Future development

esa

- Conclusion of the 2010 classification map using the PCNN method.
- Create a new map for 2015 using Landsat 8 and Sentinel-1 data
- Update the classification map every 6 months using the automatic PCNN procedure, preferably using SAR images that don't suffer from cloud coverage.
- When publicly available, start data fusion with Sentinel-2 images to improve performance

Thank you very much!

