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Abstract

The high spatial and spectral diversity of man-made  spectral resolution data. The large spectral variability
structures and the 3D structure of the cities makes the  of urban structures imposes the use of multiple
mapping of urban surfaces using Earth Observation endmember spectral mixture analysis technigques,
data one of the most challenging tasks of remote  which are very demanding in terms of computation
sensing field. Spectral unmixing techniques, although time. Moreover, the commonly used linear spectral
designed for and mainly used with hyperspectral data, = mixture analysis approaches do not account for the
they can be proven useful for use with medium  multiple scattering of light between surfaces, which
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where p; is the observed spectrum of pixel i, p; is the

representative spectrum of endmember j, M is the
number of endmembers and a; (1) is the contribution

of endmember j to the observed spectrum.
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The first term accounts for linear mixing, while the
second one accounts for multiple reflections of light
between urban surfaces (Meganem et al., 2014).
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Urban Atlas Polygons of the study area of Rome, Italy. Dotted Pseudo color composition of the fraction images, RGB: Non-
lined represent the validation area. urban bare, vegetation, built-up; water is background.
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Conclusions

» This study presents a spectral unmixing approach > The estimated fractions were compared to higher

7 Six Clou;d—fre'_'e Landsat’7 Surface Reflectance o
Climate Data-Record for 2011 =

) High resolution (0.3 m) Land Cover information for

) [+ D Ropeltaly: -

e LT

&

using endmember and non-linearly mixed synthetic resolution land cover information and a good
spectra to estimate urban surface cover fraction agreement was observed, especially for the built-up
from Landsat imagery; surface cover fraction;

» The 3D structure of cities imposes the use of non- > Neural networks” quick and accurate performance
linear spectral mixture models to account for makes them ideal to use for operational applications
multiple reflections in the urban canyons; with the Copernicus Sentinels.
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contributes significantly to the measured by the
satellites reflectances in the urban canyons. In this
study, a method is proposed to overcome these
limitations, using an artificial neural network trained
with endmember and non-linearly mixed synthetic
spectra to inverse the pixel spectral mixture in Landsat
Imagery.

Example of linear spectral synthesis
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Example of non-linear spectral synthesis
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Validation

Derived fraction image were compared to fractions
from higher resolution land cover info
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reference

estimated estimated
Built-up Vegetation Non-urban bare  Water
slope 1.074 0.974 0.622 1.208
intersect 0.043 -0.007 0.027 -0.028
R?2 0.686 0.777 0.105 0.812
MAE 0.152 0.097 0.073 0.053
RMSE 0.192 0.130 0.122 0.081
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