

Urban Mapping using Satellite Time Series

Corina Vaduva¹, Anamaria Radoi¹, Alexandru Grivei¹, Gottfried Schwarz², and Mihai Datcu² ¹University Politechnica of Bucharest, CEOSpaceTech, Romania ²DLR German Aerospace Center, Münchener Str. 20, D-82234 Weßling, Germany

Abstract

When we analyze the development of urban areas, it becomes clear that satellite image time series are highly valuable data sources that can be exploited to describe - besides vegetation cycles and land use changes - the dynamics of urban settlements and their infrastructure.

Modern high resolution optical and SAR sensors with good signal-to-noise characteristics open new perspectives for local image classification and quantitative change analysis, while low resolution sensor data are often available over many years and provide more insight into long-term processes. Advanced analysis algorithms allow the identification of typical pixel changes and their confidence levels. Finally, data fusion represents a new perspective for urban mapping.

Multitemporal satellite image time series: Analysis of urban development in and around Bucharest, Romania using Landsat data Data analytics for rapid mapping: Effects of the 2011 tsunami in Japan using very high resolution TerraSAR-X data

Automatic change analysis in satellite images: Binary descriptors and Lloyd-Max quantization

An Earth Observation spatio-temporal data mining system

Test Data Set

Our test data set consists of:

109 cloud-free images of Landsat TM and ETM+ with a spatial resolution of 30 m covering the areas of Bucharest and Ilfov in Romania.

- IterraSAR-X images with a resolution of 5.75 m. Two images were acquired as pre-disaster data (on September 21, 2008 and October 20, 2010) and 7 images were acquired after the 2011 Tohoku earthquake and tsunami, over Sendai, Japan as post-disaster data (for a period of three months from March 12, 2011 until June 19, 2011).
- Landsat 7 images with a spatial resolution of 30 m for the period between 1984 to 1992, covering an area of approximately 59×51 km² over the surroundings of Bucharest, Romania. The main interest was the construction monitoring of the Palace of Parliament and the Morii lake.
- 120 images acquired during the Landsat 4, 5, 7, and 8 satellite missions. These images cover the southern part of Romania and are centered around Bucharest.

References

- [1] T. Costachioiu, R. Constantinescu, and M. Datcu, "Multitemporal Satellite Image Time Series analysis of urban development in Bucharest and Ilfov areas", in Proc. 10th International Conference on Communications (COMM), Bucharest, Romania, 2014.
- [2] F. Petitjean, A. Puissant, and P. Gançarski, "Monitoring urban sprawl from Satellite Image Time Series", in Proc. IGARSS, Munich, Germany, 2012.
- [3] C.O. Dumitru, S. Cui, D. Faur, and M. Datcu, "Data Analytics for Rapid Mapping: Case Study of a Flooding Event in Germany and the Tsunami in Japan Using Very High Resolution SAR Images", JSTARS, Vol. 8 (1), 2015, pp. 114-129.
- [4] A. Radoi and M. Datcu, "Automatic change analysis in satellite images using binary descriptors and Lloyd-Max quantization", Geoscience and Remote Sensing Letters, Vol. 12(6), 2015, pp. 1223-1227.

Deutsches Zentrum R für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

DLR – German Aerospace Center Remote Sensing Technology Institute D-82234 Weßling http://www.dlr.de/