

30 Years' Global Scale Mapping of surface Water Dynamics at 30 m resolution

J.-F. Pekel*, A. Cottam*, N. Gorelick°, A. Belward*

Our knowledge concerning surface water locations and dynamics is inadequate and the information gap is significant

- > What about the extent of the water surfaces at any time ?
- > Where are permanent water surfaces found ?
- > Where are seasonal water surfaces found ?
- > When do they fill and empty?
- > What about the inter / intra-annual variability?
- > What about new and ex water surfaces?

Global maps are generally characterized by coarse spatial resolution, and are static in time

Global maps are generally characterized by coarse spatial resolution, and are static in time

Needs Dynamic Water Mapping at the highest possible spatial and temporal resolution

High variability of Water spectral signatures

L8 color composition: Swir2, Nir, Red

Methodology

- Pixel-based
- Sensor neutral (L5, L7, L8 and MODIS)
- Based on Hue/Saturation/Value colour model rather than RGB
- Algorithm calibrated based on a large sample (> 30.000 pixels)

- Building a number of dynamic masks to deal with: Mountain cast shadow, Cloud shadow, Clouds, Snow, Lava flows, etc
- We developed tools built on top of GEE for spectral library development and validation

Spatiotemporal Validation

Based on 20.000 validation pixels

Overall accuracy : > 90%

Intra annual variation

Monthly, 16 days, 8 days Water Maps

Providing on a per-pixel basis, the areas covered by water (in pink)

Mali, the Inland Niger Delta

<u>40 km</u>

موریتانیا Mauritanie

Mauritania

Inter and intra-annual variation:

Annual / Multiannual Occurrence Maps

Record, on a per-pixel basis, the time period (%) during which the ground surface is detected as water.

Thanks to a single product, the user knows :

- The water dynamic in both space and time
- The permanent water areas (annual/multiannual base)
- The occurrence of the seasonal water areas
- The current situation vs the past.

& Temporal profile (LT and Current)

Po Yang Hu

ጥ

Landsat courtesy USGS / NASA

20th July 2014

50 km

Landsat courtesy USGS / NASA

1984 – 1994

Po Yang Hu Global Water Occurrence Source; JRC and GEE

1995 – 2004

Po Yang Hu Global Water Occurrence 1995-2004 Source; JRC and GEE

2005 – 2014

Po Yang Hu Global Water Occurrence 2005-2014 Source; JRC and GEE

2000

Nile

2014

Merowe reservoir

<u>4 km</u>

1984 - 2014

Merowe reservoir (Since 2009)

<u>4 km</u>

Bolivian River's Timelaps 1984 to 2014

Camiaco

Los Anteojos

Louisiana Coastline Timelaps 1984 to 2014

Lake Chapeau

Fourleague.

1984-1985

1984-1986

95-1

Coastline erosion

Somerset levels (UK) Source: Flood Map and in situ photo (BBC News), Water Occurrence (JRC / GEE)

- > A Global Water Surface Dynamic Mapping at 30m resolution is here
- Current overall accuracy > 90 %
- > 30 years' global scale processing is ongoing thanks to Google Earth Engine
- Sensor neutral methodology
- Temporal resolution is still coarse, but data integration
 (e.g. Sentinel 2 A and B, Sentinel 1) will improve this (next step)
- Free and open access to the products

Products:

- > Intra annual variation:
 - Monthly Maps
 - Occurrence Maps

Inter annual variation:

- Multiannual Monthly Occurrence Maps
- Multiannual Occurrence Maps (computed based on X years periods / since 1984)
- Anomaly Maps (Current situation vs Long Term)
- Coastline Dynamic Map
- Near Real Time:
 - Dynamic Map updated every 8 or 16 days (foreseen over Africa + transfer via GEONETCast)

> ++++

Thank you

Contact: jean-francois.pekel@jrc.ec.europa.eu

Additional examples...

25

23th January 2000

Qadirabad dam, River Chenab, Pakistan 23rd January 2000 Landsat courtesy USGS / NASAre

20 km

N.S.

16th January 2015

Qadirabad dam, River Chenab, Pakistan 16th January 2015 Landsat courtesy USGS / NASA**

Water Occurrence 1984 – 2014

Qadirabad dam, River Chenab, Pakistan Global Water Occurrence 1984 – 2014 Source JRCeand GEE

