

Water quality of lakes over Europe using Sentinel-2; Atmospheric Correction and Validation

Antoine Mangin^{1,2}, Romain Serra¹, Chloé Chauvin¹, Odile Hembise Fanton d'Andon² (1) ACRI-HE, France; (2) ACRI-ST, France

- Rationale and motivation
- Atmospheric Correction (AC) final algorithms
- Secchi disk depths, turbidity and Chlorophyll-a derivation
- Impact of AC on Chl-a retrieval
- Conclusions/perspectives

Main targets for continental waters monitoring

- Environmental regulations (National, Water Framework Directive, MFSD, BW..)
- Fresh water management / Water energy management

Sentinel-2 opens the door to « ocean colour » at suitable spatial scale (water surfaces less or equal 0,5 km2)

Challenges

Atmospheric corrections, optical properties retrieval in very different waters, land/water optical contamination, ...

In preparation to S2, ACRI-ST (and partners; Veolia, EDF, NA countries...) is working with Landsat 7/8 for *Coastal Zones* and *Inland Waters*

Thematic works are done within

- SIRHYUS project led by Veolia (support : French Industry Ministry) IW
- **FP7-MEDINA** project CW

IT works are done within **FP7-SenSyf** project

 $\rho_{abs_corr} - \rho_{Ray} = \rho_{aero} + t_d \cdot \rho_{surf}$

 $\rho_{abs_corr} - \rho_{Ray} = \rho_{aero} + t_d \cdot \rho_{surf}$

Make use of the variability of the landscape

Mapping Water Bodies from Space – Frascati – 18-19 March 2015

Target stability

Algorithm for Chlorophyll-a has been derived after a complete data analysis (data has been provided by EDF and ONEMA – some from Veolia in the frame of Sirhyus project) :

First, 110 matchups of Secchi disk depths have allowed to derive formulae for three
classes:Estimation de la profondeur du disque de SecchiR²=0,808

Second, 68 matchups of turbidity (NTU) have allowed to derive formulae for two classes:

turbidity=f(classe, visible bands (B,V,R,NIR), lake depth, Secchi disk depth)

Lastly, 156 matchups of Chlorophyll concentrations have allowed to derive formulae for three classes:

Chla=f(classe, visible bands (B,V,R,PIR), turbidity)

No visible adjacency effects

Lac de Sainte-Croix

The fluctuations in AC has been propagated into the algorithm of Chlorophyll determination

The fluctuations in AC impacts by about 10% the chlorophyll retrieval

Eye_On_Water : http://eyeonwater.eu

Availability

from May 2013 – updated every day

Spatial coverage

presently limited to 650 lakes/reservoirs for testing purpose

Data used

Landsat 7/8 (in preparation to Sentinel-2)

Algorithms

Atmospheric correction Surface Chlorophyll concentration (4 types of waters) – ACRI-ST

- Display and navigation are supported by Open Street Map
- Largest symbols point toward a more recent information (from which iso-value contours are computed)

Color codes are following the standards state/pressure from De Bortoli et Argillier (2008)

Quality levels are depending on surface chlorophyll concentrations and lakes depths

Profondeur maximale du lac (m)

The tool is presently used for validation to detect temporal and/or spatial artifact

The tool is presently used for validation to detect temporal and/or spatial artifact

Atmospheric correction

- Use of the mixed landscape (water + land) to derive (robust) atmospheric correction
- Reasonable assumption is stability of aerosols over one scene
- Aerosols absorption not considered
- Adjacency effects not considered (has to be evaluated and considered in a quality indicator)

Chlorophyll derivation

- Already operational and under large scale evaluation
- Adaptation to Landsat-8 done
- Quality of in situ data needs to be better described

Operational system

• Fully (and easily) adaptable to Sentinel-2

Validation

We are in a process of setting up a validation "club" for the eyeonwater.eu open to

- Scientists
- Institutions in charge of WQ monitoring
- Large public

To get feedback on the site, validation material, in situ truth

If you are interested you are welcome ! (send a mail from the site)

Operational system

We are fully open to implement and run other algorithms (AC and WQ) for cross-evaluation and improvements of the system.

For both aspects, if you are interested you are welcome ! (send a mail from the site)

Water quality of lakes over Europe using Sentinel-2; Atmospheric Correction and Validation

Antoine Mangin^{1,2}, Romain Serra¹, Chloé Chauvin¹, Odile Hembise Fanton d'Andon² (1) ACRI-HE, France; (2) ACRI-ST, France

Thank you for attention

antoine.mangin@acri-st.fr

Eyeonwater.eu