

Confidential

WorldDEM and TanDEM-X Mission

HOW has WorldDEM become possible

TanDEM-X Mission

- Twin Satellites: TerraSAR-X & TanDEM-X flying in a very close and precise formation
- Mission Goal: homogeneous, high-quality global DEM (taking advantage of the twin constellation by using interferometry)
- Data acquisition within 3 years only from one unique source

Public-Private Partnership (DLR/Airbus Defence and Space)

 Airbus DS holds commercial exploitation and marketing rights: (responsible for the adaption of the elevation model to the needs of the user)

WorldDEM and TanDEM-X Mission

- First worldwide, consistent and seamlessDEM product
 - Covering the entire Earth's land mass (pole-to-pole)
 - ~12m pixel size
 - Relative vertical accuracy <2m/<4m (dep. on slope)
 - Absolute vertical accuracy < 4m
 - Absolute horizontal accuracy < 6m
- WorldDEM started to become available beginning 2014
- The working units are mostly 1° x 1° tiles,
 ~20.000 tiles cover the entire Earth

WorldDEM - Level of Detail

Close-Up

Death Valley N26W118

SRTM 90 SRTM 30 W

WorldDEM

TanDEM-X SAR amplitude

WorldDEM - Level of Detail

Paraguay, NW of Filadelfia

WorldDEM Product Line

Digital Surface Model (DSM) representing the surface of the Earth including heights of buildings and other man-made objects, trees, forests and other vegetation

Two variants:

WorldDEM_{core} - unedited DSM (including erroneous surfaces)

WorldDEM - edited terrain features & water bodies

WorldDEM_{core}

Unedited Digital Surface Model – Includes typical radar processing artefacts

Terrain Artefacts

- Typical radar outliers that have no relation to the relief height
- Voids and data gaps
- Processing artefacts (steep terrain)

Water Artefacts

- All water bodies are artefacts
- they appear as rough surface or voids

No editing of water bodies

WorldDEM_{core}

Unedited Digital Surface Model – Includes auxiliary masks as the WAM

Water Body Indication Mask

- is part of WorldDEM_{core} product
- global availability

Reduced Reliability

For a correct integration in the WorldDEM ALL water bodies have to be edited!

Water Body Indication Mask (WAM)

WorldDEM

Edited Digital Surface Model

Following editing steps and rules are applied:

Water body editing

- Lakes & reservoirs: set to single elevation
 - Water bodies: width: >50m, length: >150m
- Ocean elevation is set to 0 m
- Rivers & canals: flattened with monotonic flow (0,5m steps)
 - Water bodies: width: >50m, length: >300m
- Coastal infrastructure features and bridges are removed

All edited water pixels are stored within a <u>Water Body Mask</u> that will be globally available as additional information layer to the WorldDEMTM

Water bodies are flattened

WorldDEM

Globally consistent Water Body Mask (WBM)

Features of the WBM

- Side product of the editing process from WorldDEM_{core} to the end-user DEM (WorldDEMTM)
- Precise and refined water mask
 in comparison to the Water Body Indication
 Mask
- Distinction between
 - Ocean
 - Lakes/Reservoirs
 - Rivers

with specific flattening algorithms, minimum mapping units for each water type

- Intersection with height values
- Global availability and consistency

Water Body Mask, Australia (S35E135)

WorldDEM Water Body Mask

WorldDEM (12m) SRTM Water Body Data (90m)

Editing Water Bodies

HOW is the Water Body Mask obtained?

All water features in WorldDEM_{core} data require hydrological editing

Editing Water Bodies

Software for editing WorldDEM_{core} data – adequate tools for water editing DEMES

Water Body Editing

- Delineation of water bodies (automatic and manual)
- Classification intoOcean Lake River
- 3. Implementing Water Bodies in the DEM (machine driven)

DEMES Editing software

Editing Water Bodies

Elevation model and intensity images are the only information source

Editing Water Bodies

Perception Tool (automatic delineation)

- Automatic or semi-autimatic classification of feature class Land and feature class Lake (Perception classifies all water features as Lake – largest class)
- Perception uses grey values of AMP images, threshold can be calibrated

$\mathsf{AMP}_{\mathsf{MIN}}$

 AMP_{MEAN}

Editing Water Bodies

Implementing Oceans

Editing process

Editing Water Bodies

Implementing Lakes

Editing process

Editing Water Bodies

Implementing Rivers

- 1. Classification into River
- 2. Create River Graph
- 3. Flatten Rivers

Editing process

Editing Water Bodies

River Graph – height estimation for rivers

WorldDEM

Water Body Mask, Nigeria (N04E006)

WorldDEM

Level of Effort

Estimation of linear shoreline kilometer per editing feature class, if global DEM is edited:

~2	~21	~6
mil. km	mil. km	mil. km
Ocean	Lake	River

~29 mil. km

Hydrologic classification of GeoTiles

* Antarctica excluded

Global Ocean Shoreline Layer

Derived from the Ocean Mask

Represents the water-land-mark (mean high water) at the time of data collection

Global Ocean Shoreline layer can be used to model Sea Level Rise

Quality of Elevation Reference is decisive for the Ocean Shoreline Layer

Case Study: Global Sea Level Rise-up – a Proven Fact

Geomorphological & hydrological impact in human and natural environment

- loss of soil to the sea
- Increase of saltwater intrusion (e.g. danger of drinking water reservoirs in coastal areas)
- Increase of storm surges, frequency of cyclones and floodings

IncREO

WorldDEM (Pixel spacing 12m)

ASTER GDEM (Pixel spacing 30m)

Sea Level: 0 m Sea Level: + 3 m Sea Level: + 5 m Sea Level: + 10 m

Test site: Toulon, France

Quality of Elevation Reference is decisive in Flood and Sea Level Rise modelling

