

→ MWBS | MAPPING WATER BODIES FROM SPACE 2015 CONFERENCE

EVIDENCE OF RECENT CHANGES IN THE ICE REGIME OF HIGH ARCTIC LAKES FROM SPACEBORNE SATELLITE OBSERVATIONS

Cristina M. Surdu¹, Claude R. Duguay² and Diego Fernández Prieto¹

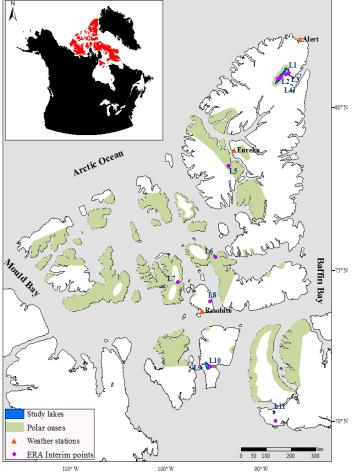
> ¹ European Space Agency, ESRIN, Italy ² University of Waterloo, Ontario, Canada

18–19 March 2015 | ESA-ESRIN | Frascati (Rome), Italy

Objectives

To document and analyze the response of High Arctic lakes to recent climate conditions:

- start and duration of ice break-up
- timing of summer minimum ice cover
- presence/persistence of perennial ice
- response of lakes in polar desert vs. those in polar oasis environments



□ Changes in the ice cover of high-latitude lakes:

- are good indicators of changes in climate
- control changes in lake water temperature
- promote additional light availability
- lead to longer growing seasons (e.g. a diversified planktonic flora, an overall increased rate of primary production) as a result of shorter ice seasons
- Iead to changes in the chemical properties of lakes
- impact habitat availability for certain species of fish and birds

Study Area

ERL

- 11 lakes in the Canadian Arctic Archipelago (CAA), including Lake Hazen, world's largest lake north of the Arctic Circle
- Lakes are ice covered for more than 9 months/year
- □ Some maintain a perennial ice cover
- Polar deserts (pd) cold, dry climate (7 lakes)
 - Polar oases (po) warmer climate, more vegetation and higher biological diversity (4 lakes)

C-band SAR acquisitions (1997-2011):

- RADARSAT-1/2 (ScanSAR Wide Swath B) (100 m, with a pixel spacing of 50 m 2x2 block averaged to 100 m)
- ASAR (Wide Swath) (150 m spatial resolution, with a pixel spacing of 75 m)

Optical imagery (1997-2011):

Landsat 4/7 (30 m spatial resolution)

Climate data (1997-2011):

Weather station records (Alert, Eureka, Resolute, NU)

ERA-Interim Reanalysis data (~ 0.75° x 0.75° resolution)

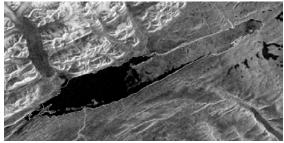
UNIVERSITY OF WATERLOO

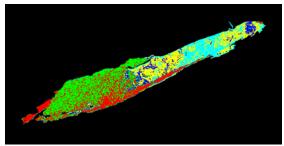
Data

Year of observations	RADARSAT-1	RADARSAT-2	ASAR
1997	231	-	-
1998	761	-	-
1999	787	-	-
2000	718	-	-
2001	1777	-	-
2002	1476	-	-
2003	1431	-	-
2004	1392	-	-
2005	1282	-	126
2006	1202	-	403
2007	1435	-	316
2008	1100	2740	339
2009	65	1561	539
2010	155	1077	380
2011	-	-	855
Total	13,812	5,378	2,958

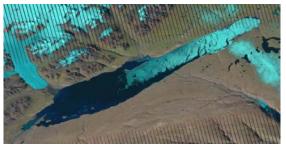
□ > 2000 Landsat images

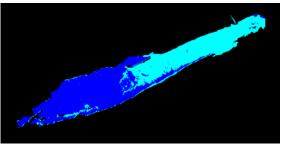
Number of images used for analysis


Methods


SAR image segmentation: the unsupervised K-means algorithm

~1600 SAR segmented images in order to derive ice/open water fractions


ASAR, 19 July 2010

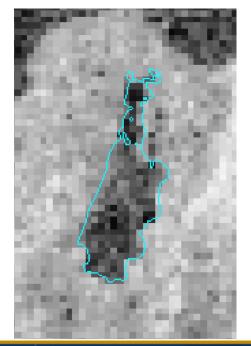

K-means classified image (5 clusters)

Landsat, 19 July 2010

Two-class map of ice and open water

Histogram statistics (text files) - ice and open water fraction (%)

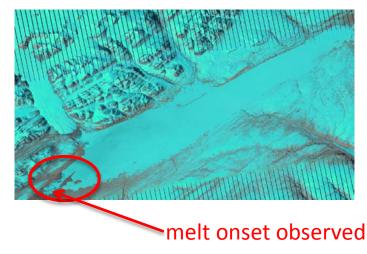
Melt Onset



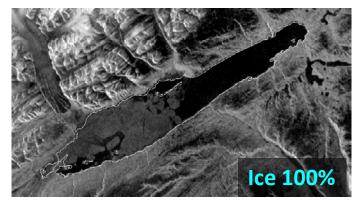
Spatial resolution of RADARSAT-1/2 ScanSAR Wide Swath and ASAR Wide Swath = too coarse to detect melt onset on small lakes (1-5 km² surface area)

Landsat, 10 July 2003

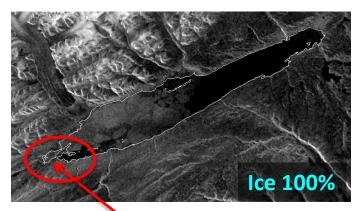
RADARSAT-1, 11 July 2003



The Ice Season



Landsat, 8 June 2010


WATERLOO

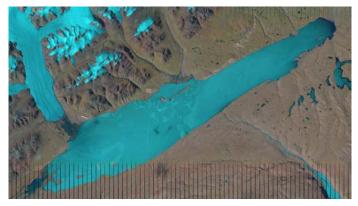
ASAR, 12 June 2010

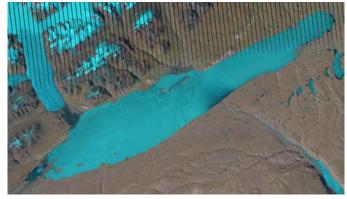
ASAR, 9 June 2010

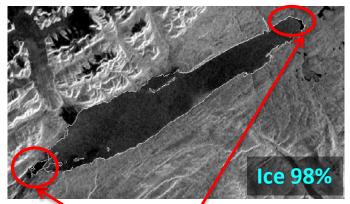
Melt onset not detected

Landsat, 18 June 2010

UNIVERSITY OF


The Ice Season – cont.


Landsat, 24 June 2010

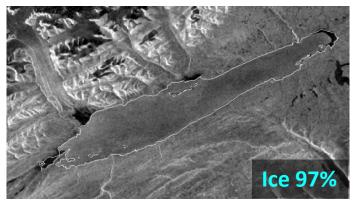

Landsat, 29 June 2010

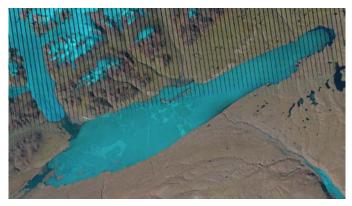
Landsat, 26 June 2010

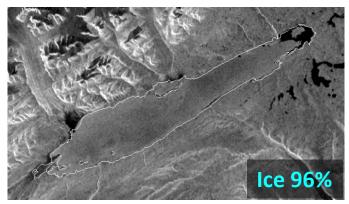
ASAR, 30 June 2010

first detected melt onset with SAR (24 days later than Landsat)

UNIVERSITY OF


The Ice Season – cont.

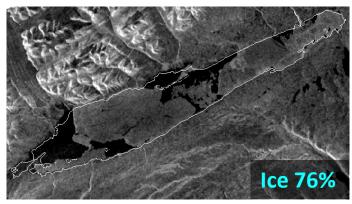

Landsat, 2 July 2010

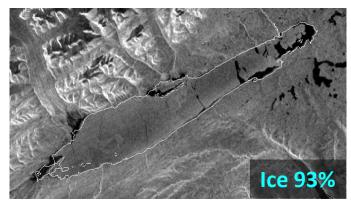

ASAR, 7 July 2010

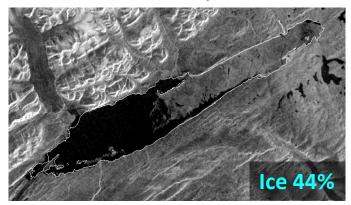
Landsat, 5 July 2010

ASAR, 11 July 2010

→ MWBS | MAPPING WATER BODIES FROM SPACE 2015 CONFERENCE 18-19 March 2015 | ESA-ESRIN | Frascati (Rome), Italy

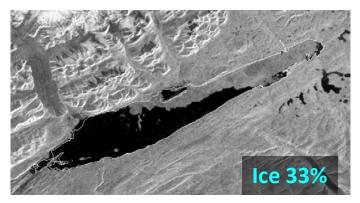

The Ice Season – cont.


Landsat, 13 July 2010

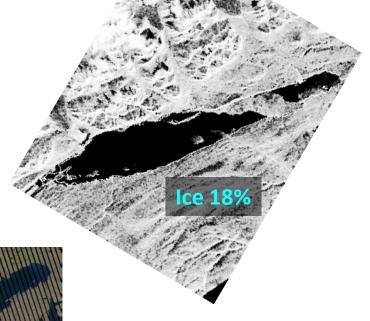

ASAR, 17 July 2010

ASAR, 14 July 2010

ASAR, 19 July 2010

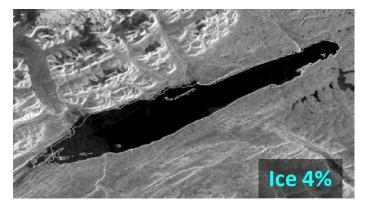


ASAR, 22 July 2010


WATERLOO

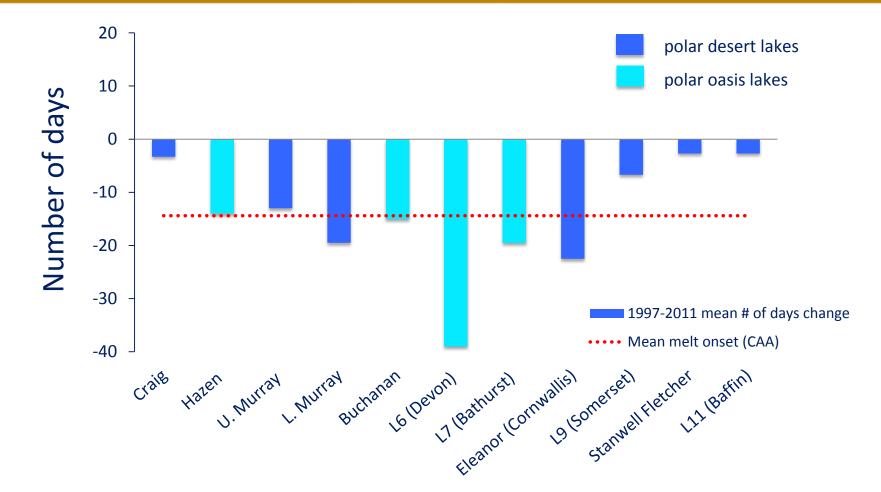
Landsat, 27 July 2010

RADARSAT-2, 25 July 2010



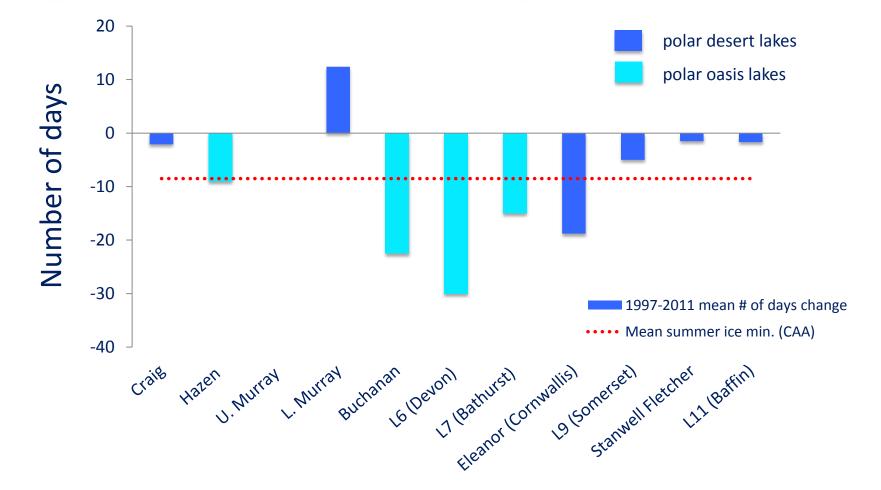
ASAR, 29 July 2010

UNIVERSITY OF


ADARSAT-2, 31 July 2010

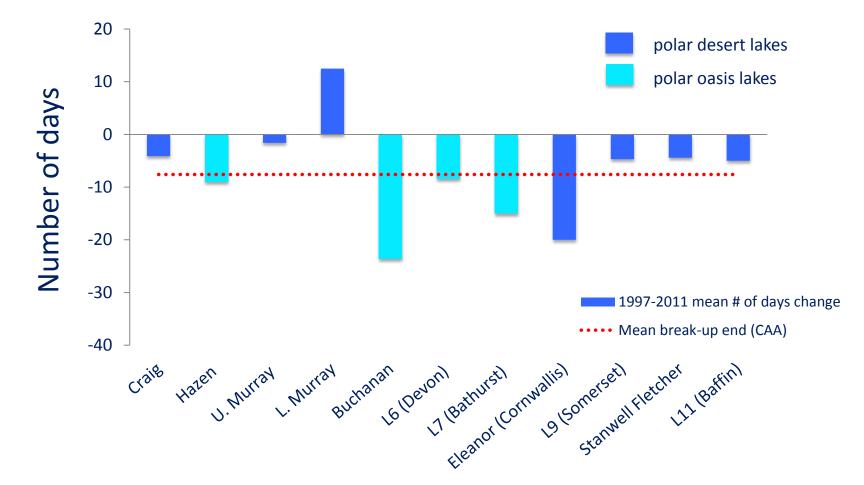
MWBS | MAPPING WATER BODIES FROM SPACE 2015 CONFERENCE 18–19 March 2015 | ESA-ESRIN | Frascati (Rome), Italy

Melt Onset


Surdu et al., under review

MWBS | MAPPING WATER BODIES FROM SPACE 2015 CONFERENCE 18-19 March 2015 | ESA-ESRIN | Frascati (Rome), Italy

Summer Ice Minimum


Surdu et al., under review

MWBS | MAPPING WATER BODIES FROM SPACE 2015 CONFERENCE 18–19 March 2015 | ESA-ESRIN | Frascati (Rome), Italy

WATERLOO

Break-up End

Surdu et al., under review

MWBS | MAPPING WATER BODIES FROM SPACE 2015 CONFERENCE 18–19 March 2015 | ESA-ESRIN | Frascati (Rome), Italy

Summary

- □ Ice conditions for 11 lakes in the Canadian High Arctic were observed between 1997-2011 from combined ASAR, RADARSAT-1/2 and Landsat observations
- Melt onset started earlier for all 11 lakes
- Summer ice minimum occurred earlier for all lakes excepting Lower Murray Lake (Ellesmere Island)
- Break-up ended earlier for all lakes excepting Lower Murray Lake that experienced later break-up by 12.5 days
- Perennial ice was occasionally observed for 5 lakes

Arctic environment	Melt onset (# of days early)	Summer ice minimum (# of days early)	Ice-off (# of days early)	Perennial ice (occasionally)
Polar desert	3-23	2-19	2-20	3 lakes
Polar oasis	14-39	9-30	9-24	2 lakes

Main Limitations

Spatial resolution of the SAR beam modes (100-150 m) – does not capture melt onset for (small) lakes

melt onset observed with Landsat

Temporal resolution of both SAR and optical sensors

- transition from minimum ice to open water can occur within 1-2 days
- optical and SAR acquisitions are at times 5 days apart

Acknowledgements

- This work was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) to Claude Duguay.
- RADARSAT-1 images are copyright the Canadian Space Agency (CSA), 1997-2010.
- RADARSAT-2 Data and Products, © MacDonald, Dettwiler and Associates Ltd., 2008-2011, all rights reserved.
- ASAR data is copyright the European Space Agency (ESA), 2005-2011.

□ Landsat images were provided by the U.S. Geological Survey.

Questions??