Monitoring Sahelian ponds water quantity and quality by remote sensing

Manuela Grippa, Laëtitia Gal, Elodie Robert, Laurent Kergoat, Pierre Hiernaux, Éric Mougin Jean-Michel Martinez

Géosciences Environnement Toulouse (GET), Toulouse, France
Motivations: Why monitoring water bodies in the Sahel?

Surface water critical to people and livestock
- often the only water resource
- domestic use (including drinking...)
- low infrastructures, significant poverty, high vulnerability

Hydrology: Sahelian hydrology poorly understood

Health: water quality issues, ‘water deseases’

Methane and carbon cycles

Wildlife, various ecosystems services

Low monitoring infrastructures -> remote sensing very useful.
Sahel: 600 to 100 mm/year, 9 month dry season, semi-arid hot area

Largely endorheic (lot’s of ponds), a few rivers

Niger and Senegal just ‘visit’ Sahel, with almost no contribution from Sahel
Sahelian Hydrology:

Largest multidecadal drought in 20th century

Expected consequence: strong reduction in river flow and water bodies surface between the wet 50-60 ies and the dry 70-80-90
Sahelian Hydrology :

Expectation WRONG ! (as well as all large-scale models ?)

Less rain, but :

Increased surface runoff (seen as soon as 1985 in Burkina, Albergel)
Rising water table in SouthWest Niger (continuous 1990-present)
 because of increase of waterflow in gullies, more infiltration
Increasing river flow and runoff coefficient in all surveyed Sahelian rivers (1980-present)
Increase red flood of the Niger

 Leduc, Favreau, Descroix Mahé, Amogu et coll.

Generally attributed to increasing crop area.

 What happened to water bodies ?

 What happened to un-cultivated Sahel ?

 What are the processes ?
Rain = 350 mm/year

Runoff on shallow soils (35%) feeds ponds

No runoff on deep sandy soils

Shallow ponds of various size, flat terrain
Method: Compilation of (all) remote sensing data, aerial pictures

Results: The striking case of the Agoufou pond (AMMA supersite)
A regional phenomenon

landsat scenes 1975 – 2002

91 ponds classified

General increase of ponds surface all over the region: +98% (Gardelle et al 2010 HESS)

Mostly turbid ponds increased
Strong increase of ponds’ surface in the dry last 30 years, compared to the wet 50-60’. Acceleration in the early 90’.

Sahelian paradox holds for uncultivated Sahel

Processes still uncertain, a plant-runoff-gully-erosion story.
Sahelian hydrology: From surface to volume

Need some information on water level in situ
prior shape equation
(all ponds are conical, but some more conical than others)
futur wide-swath altimeter (SWOT)

A series of high/moderate resolution images Formosat, Landsat, Spot

-> 3D shape of the pond
H, S, V relations
Sahelian hydrology: From volume to discharge

Pond’s water balance: \[\frac{dV}{dt} = P - E + \text{Discharge} - \text{Infiltration} \]

Integration between two dates / images gives cumulated discharge to the pond
Some lessons from ponds surface/volume monitoring

Open water surface fairly easy

Flooded vegetation may be tricky.
 -> SWIR helps
 -> high resolution helps (fewer mixed pixels)
 -> frequent data help (shallow flooded vegetation short lived, interpolated)

Sahelian ponds are small: 30 m or less is fine.

1988-1998 large gap in Landsat data (USGS, ESA)
 -> fill with SPOT (ERS for larger ponds ?)
 -> encourage multi-sensor products
 -> are there lost data somewhere ?

SWOT + S2/L8 ideal for surface + volume assessment !

Sahelian ponds are shallow, forget large-scale DEM ...

Water bodies products more numerous than Sahelian validation sites ?
On going research: turbidity and health issues

Georgia Water Science Center
Matching in situ turbidity with MODIS, Landsat, SPOT reflectance

The Very Turbid Agoufou pond

Preliminary results
Grippa, AMMA-CATCH observatory
Bagre lake, Red & Infra-red Reflectance

Reflectance (* 10,000)

Jan 2000 Jan 2015

Planned trip July 2015
SPOT take 5

In situ spectrometry
In situ SPM, turbidity
In situ health survey

Radiance modeling
Tests of J.M. Martinez algorithm
(Poster)

Elodie Robert postdoc. CNES
Support from PNTS
A few more conclusions

S2 well suited for water quality (red edge bands)
Good S2 level 2 data (Sahel: high dust, biomass burning) desirable
In situ data are scarce in the Sahel and need support (too).

Thank you
Fig. 10. The 91 ponds of central Gourma ranked by the absolute value of the change in flood area between 1975 and 2002 (x-axis, negative values indicate decrease in flood area, positive value increase), in relation with the area covered by the pond in 2002, separated into turbid water without vegetation (“blue” pond) and less turbid with aquatic vegetation (“red” pond).