Biodiversity Indication for 300 Lakes worldwide using ENVISAT

Daniel Odermatta,b, Carsten Brockmanna, Petra Philipsonc, Marc Paganinid

a Brockmann Consult GmbH, Germany
b Odermatt & Brockmann GmbH, Switzerland
c Brockmann Geomatics, Sweden
d ESA ESRIN, Italy
Introduction

„The ultimate goal of the Diversity II Project is to … contribute to the assessment and monitoring of the Aichi 2020 Biodiversity Targets of the CBD.“ (SoW, 2011)

• Dedicated tasks to achieve this goal:
 ▪ Link biodiversity and EO experts
 ▪ Selection of best algorithms available
 ▪ Production by using and extending existing components
 ▪ Validation

• Diversity II is an ESA DUE project, lasting from September 2012 to May 2015

• The content of this presentation focuses on inland waters, but drylands are addressed equally in the scope of Diversity II

• The CaLimnos lake processing chain developed for Diversity II is further developed in collaboration with the GloboLakes team (Simis et al.@MWBS)
CaLimnmos Processing Chain

- ROIs are defined as vectorized maximum lake extents from the LC-CCI WB (Santoro et al.@MWBS)
- Each of the 300 lake is represented by one polygon separated at 300 m resolution
- GLWD metadata are provided in a merged attribute table

www.goo.gl/9qES0n
CaLimnos Processing Chain

- Water quality is retrieved from bulk reprocessed MERIS FR data
- AMORGOS georectified
- Clouds, land and mixed pixels are identified using Idepix from CoastColour
CaLimnos Processing Chain

- Water quality retrieval algorithms are applied to derive L2 products
- L2 layers are aggregated as mean monthly L3, using algorithm-specific valid pixel expressions
- MPH for Chlorophyll-a, cyanobacteria and floating matter in eutrophic lakes (Matthews & Odermatt, 2015)
CaLimnos Processing Chain

- Water quality retrieval algorithms are applied to derive L2 products
- L2 layers are aggregated as mean monthly L3, using algorithm-specific valid pixel expressions
- FUB algorithm for low to moderate Chlorophyll-a and CDOM (Schroeder et al., 2007)
CaLimnos Processing Chain

- Water quality retrieval algorithms are applied to derive L2 products.
- L2 layers are aggregated as mean monthly L3, using algorithm-specific valid pixel expressions.
- CoastColour algorithm for TSM and turbidity (Doerffer et al., 2012)
CaLimnos Processing Chain

• Mode aggregation is applied to derive dominant optical water types (Moore et al., 2014)

• Allows users to select the appropriate chlorophyll product:
 - Type 1-3: FUB
 - Type 4-7: MPH
CaLimnos Processing Chain

- A new approach was developed to identify shallow water areas (Brockmann et al. @MWBS)

- The shallow water indicator was visually verified for each lake and specific thresholds are set in the attribute table.
CaLimnos Processing Chain

- Merging of auxiliary datasets
- ARC Lake LSWT products as L3 layer (MacCallum & Merchant, 2012)
- LEGOS/Hydroweb water level estimate timeseries (Crétaux et al., 2011)
Customization and Analysis Tools

1st order monthly L3

original L3 products

uncalibrated L3 products

quality assessment

map_products.py

artifacts

blacklist, rebin

BEAM L3 binner

re-binned L3 products

ref data

recalibrate

BEAM band arithmetics

ROI shapefile

re-calibrated L3 products

arithmetic L3 products

calculate map statistics

extract_stats.py

parameter tables

plot time series

plot_timeseries.py

time series
Product Customization

- Re-bin yearly and 9-year products using BEAM level 3 binning
 - Typically needed to remove melting lake ice affected monthly products
 - Available in GUI/VISAT and gpt/batch mode
Product Customization

- Re-bin yearly and 9-year products using BEAM level 3 binning
 - Typically needed to remove melting lake ice affected monthly products
 - Available in GUI/VISAT and gpt/batch mode
Product Customization

- Calibrate with reference measurements using BEAM band arithmetic
 - Apply slope and intercept from regression with in situ reference data
 - Available in GUI/VISAT and gpt/batch mode
Product Customization

- Calibrate with reference measurements using BEAM band arithmetic
 - Apply slope and intercept from regression with in situ reference data
 - Available in GUI/VISAT and gpt/batch mode
Biodiversity Stories

Diversity II product analyses were provided by: Orlane Anneville, Sean Avery, Damien Bouffard, Steve Greb, Anna-Birgitta Ledang, Mark Matthews, Claire Miller, Todd Miller, Ruth O’Donnell, Frédéric Rimet, Alfred Sandström, Marian Scott, Emma Tebbs.

Images courtesy of Conver BV, Wisconsin Dept. of Natural Resources, Damien Bouffard, Wikimedia Commons.
An extraordinary algal bloom occurred in summer 2007, following a moderate spring bloom and a pronounced depletion phase.
Algal Communities in Lake Geneva

Damien Bouffard, Frédéric Rimet

• Reference data by Rimet (2014) indicate that the algae are *Mougeotia sp.* (Zygophyceae)

• According to Tapolczai et al. (2014), they benefit from:
 - an early annual development following a mild winter
 - strong wind mixing in early summer
 - a deep photic zone
• K-ε turbulence modelling and Diversity II LSWT for the annual cooling peak in March agree in warm 2007 temperatures

• Together with the deep photic layer following the spring bloom depletion, ideal conditions for *Mougeotia sp* are observed
Eutrophication in Lake Victoria

- Cyanobacteria blooms originating from the highly eutrophic bays occasionally extend to pelagic waters
Eutrophication in Winam Gulf

Anna-Birgitta Ledang, Daniel Odermatt

- Water hyacinth (*Eichhorna crassipes*) proliferation observed following El Nino rainfalls in 1998 and 2007
- Relative dynamics in good agreement with SAR and Landsat observations (Fusilli et al., 2013)
Water Extent Variations in Lake Eyre

21st June, 2009

Reference data courtesy of the Lake Eyre Yacht Club
Contact info@diversity2.info for immediate access
The distribution portal will be online by the end of March
Conclusions

• A database of the most common water quality and quantity parameters feasible from remote sensing is provided for 340 lakes worldwide

• Several existing global lake datasets and archives are used and re-distributed (LC-CCI WB, ARC Lake, LEGOS Hydroweb)

• A post-processing framework for analysis and display tasks is provided to allow for lake and interest specific customization

• Biodiversity studies highlight successful applications of the provided data and post-processing framework

• The project ends in May with the completion of all documentation

• Further development of the Calimnos processing chain is planned in collaboration with the GloboLakes team (Simis et al.@MWBS)
Acknowledgements

We thank the inland water experts listed in the following non-exhaustive enumeration for supporting Diversity II:

Consultancy: Steve Greb, Sampsa Koponen, Kai Sorensen.

User requirements: Stewart Bernard, Bill Brierley, Mark Dowell, Jörg Freyhof, Steve Greb, Steve Groom, Paul Hanson, Ian Harrison, Erin Hestir, Peter Hunter, Isabel Kiefer, Engin Koncagul, Sampsa Koponen, Mark Matthews, Kai Sorensen, Evangelos Spyrakos, Emma Tebbs, Andrew Tyler.

Implementation: Jean-François Crétaux, Marieke Eleveeld, Luis Guanter, Annelies Hommersom, Stuart MacCallum, Mark Matthews, Tim Moore, Eirini Politi, Richard Smith.

Reference data: Bob Backway, Selima Ben Mustapha, Caren Binding, Michael Feld, Justin Funk, Steve Greb, Peter Hunter, Peter Keller, Allyn Knox, Oliver Koester, Sampsa Koponen, Vincent Kotwicki, Susanne Kratzer, Tiit Kutser, Paul Mann, Bunkei Matsushita, Mark Matthews, Kirk McIntosh, Ghislaine Monet, Jun Nagasato, Stephanie Palmer, Matyas Présing, Laiho Risto, Antonio Ruiz Verdu, Jennifer Slate, Kai Sorensen, Evangelos Spyrakos, Rémy Tadonléké, Kumiko Totsu, Juha Tiihonen, Andrew Tyler.

Biodiversity Stories: Orlane Anneville, Sean Avery, Damien Bouffard, Steven Greb, Anna-Birgitta Ledang, Mark Matthews, Claire Miller, Todd Miller, Ruth O'Donnell, Frédéric Rimet, Alfred Sandström, Marian Scott, Emma Tebbs.

Dissemination: Arnold Dekker, Stephanie Palmer, Natacha Pasche.

For a more detailed version of this presentation, please refer to http://www.earthobservations.org/webinar_wq.shtml

Product basemaps are created from SRTM and Microsoft QuadTree image tiles.
Biodiversity Indication for 300 Lakes worldwide using ENVISAT

Appendix
Overview of Database Contents

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Format</th>
<th>Temporal resolution</th>
<th>Time series</th>
<th>n_lakes</th>
</tr>
</thead>
<tbody>
<tr>
<td>num_obs</td>
<td>geotiff</td>
<td>monthly, yearly, 9-y</td>
<td>plot_timeseries.py</td>
<td>341</td>
</tr>
<tr>
<td>chl_mph_mean, sigma</td>
<td>geotiff</td>
<td>monthly, yearly, 9-y</td>
<td>plot_timeseries.py</td>
<td>341</td>
</tr>
<tr>
<td>chl_fub_mean, sigma</td>
<td>geotiff</td>
<td>monthly, yearly, 9-y</td>
<td>plot_timeseries.py</td>
<td>341</td>
</tr>
<tr>
<td>cdom_fub_mean, sigma</td>
<td>geotiff</td>
<td>monthly, yearly, 9-y</td>
<td>plot_timeseries.py</td>
<td>341</td>
</tr>
<tr>
<td>tsm_cc_mean, sigma</td>
<td>geotiff</td>
<td>monthly, yearly, 9-y</td>
<td>plot_timeseries.py</td>
<td>341</td>
</tr>
<tr>
<td>turbidity_cc_mean, sigma</td>
<td>geotiff</td>
<td>monthly, yearly, 9-y</td>
<td>plot_timeseries.py</td>
<td>341</td>
</tr>
<tr>
<td>immersed_cyanobacteria_mean</td>
<td>geotiff</td>
<td>monthly, yearly, 9-y</td>
<td>plot_timeseries.py</td>
<td>341</td>
</tr>
<tr>
<td>floating_cyanobacteria_mean</td>
<td>geotiff</td>
<td>monthly, yearly, 9-y</td>
<td>plot_timeseries.py</td>
<td>341</td>
</tr>
<tr>
<td>floating_vegetation_mean</td>
<td>geotiff</td>
<td>monthly, yearly, 9-y</td>
<td>plot_timeseries.py</td>
<td>341</td>
</tr>
<tr>
<td>owt_cc_dominant_class_mode</td>
<td>geotiff</td>
<td>monthly, yearly, 9-y</td>
<td>-</td>
<td>341</td>
</tr>
<tr>
<td>lswt_d_mean</td>
<td>geotiff</td>
<td>monthly, yearly, 9-y</td>
<td>plot_timeseries.py</td>
<td>298</td>
</tr>
<tr>
<td>lswt_n_mean</td>
<td>geotiff</td>
<td>monthly, yearly, 9-y</td>
<td>plot_timeseries.py</td>
<td>298</td>
</tr>
<tr>
<td>shallow</td>
<td>geotiff</td>
<td>-</td>
<td>-</td>
<td>341</td>
</tr>
<tr>
<td>water surface level</td>
<td>csv, png</td>
<td>ca. monthly</td>
<td>png</td>
<td>103</td>
</tr>
<tr>
<td>lake shapefiles</td>
<td>shp</td>
<td>9-y</td>
<td>-</td>
<td>341</td>
</tr>
<tr>
<td>lake list</td>
<td>xlsx, shp</td>
<td>-</td>
<td>-</td>
<td>341</td>
</tr>
<tr>
<td>merged GLWD attribute table</td>
<td>xlsx</td>
<td>-</td>
<td>-</td>
<td>315</td>
</tr>
</tbody>
</table>
Quality Assessment

- `map_products.py`
 - Predefined colour scales for each parameter
Quality Assessment

- **map_products.py**
 - Predefined colour scales for each parameter
 - SRTM and quadtree RGB basemaps
Quality Assessment

- `map_products.py`
 - Predefined colour scales for each parameter
 - SRTM and quadtree RGB basemaps
 - User-defined geographic areas
Quality Assessment

- map_products.py
 - Predefined colour scales for each parameter
 - SRTM and quadtree RGB basemaps
 - User-defined geographic areas
 - User-defined parameter ranges
Extract Product Statistics

- `extract_stats.py`
 - User-defined ROI shapefile
 - Select relevant percentile thresholds
 - Table 1: List of parameters for one product
 - Table 2: List of products for one parameter

Table 2: Statistics for all annual chl-mph products of Lake Winnebago

<table>
<thead>
<tr>
<th>stats_start_date</th>
<th>stats_end_date</th>
<th>average</th>
<th>max_error</th>
<th>maximum</th>
<th>median</th>
<th>minimum</th>
<th>p10_threshold</th>
<th>p90_threshold</th>
<th>sigma</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.01.03</td>
<td>31.12.03</td>
<td>58.3817</td>
<td>0.0227</td>
<td>229.4457</td>
<td>55.9768</td>
<td>2.1542</td>
<td>34.8614</td>
<td>86.1384</td>
<td>19.5814</td>
<td>7582</td>
</tr>
<tr>
<td>01.01.04</td>
<td>31.12.04</td>
<td>44.8263</td>
<td>0.0146</td>
<td>153.4678</td>
<td>44.2148</td>
<td>7.1533</td>
<td>33.6948</td>
<td>55.4371</td>
<td>9.4054</td>
<td>7583</td>
</tr>
<tr>
<td>01.01.05</td>
<td>31.12.05</td>
<td>39.6636</td>
<td>0.0163</td>
<td>170.9711</td>
<td>38.9712</td>
<td>7.524</td>
<td>28.1346</td>
<td>50.2164</td>
<td>10.2415</td>
<td>7584</td>
</tr>
<tr>
<td>01.01.06</td>
<td>31.12.06</td>
<td>58.4701</td>
<td>0.0228</td>
<td>230.8199</td>
<td>57.4622</td>
<td>3.1071</td>
<td>38.9719</td>
<td>76.8177</td>
<td>16.7209</td>
<td>7576</td>
</tr>
<tr>
<td>01.01.07</td>
<td>31.12.07</td>
<td>58.6078</td>
<td>0.0195</td>
<td>199.1671</td>
<td>57.5363</td>
<td>4.4588</td>
<td>39.2727</td>
<td>78.6427</td>
<td>16.0813</td>
<td>7587</td>
</tr>
<tr>
<td>01.01.08</td>
<td>31.12.08</td>
<td>55.727</td>
<td>0.0138</td>
<td>149.5578</td>
<td>53.9714</td>
<td>11.0669</td>
<td>45.8004</td>
<td>68.4991</td>
<td>10.4695</td>
<td>7586</td>
</tr>
<tr>
<td>01.01.09</td>
<td>31.12.09</td>
<td>118.8993</td>
<td>0.0262</td>
<td>269.7176</td>
<td>114.5339</td>
<td>7.2283</td>
<td>81.329</td>
<td>157.4247</td>
<td>30.9506</td>
<td>7586</td>
</tr>
<tr>
<td>01.01.10</td>
<td>31.12.10</td>
<td>52.9466</td>
<td>0.0196</td>
<td>212.8041</td>
<td>50.367</td>
<td>17.1439</td>
<td>40.858</td>
<td>67.2721</td>
<td>13.1837</td>
<td>7586</td>
</tr>
<tr>
<td>01.01.11</td>
<td>31.12.11</td>
<td>225.9449</td>
<td>0.0404</td>
<td>457.5571</td>
<td>224.5013</td>
<td>53.7175</td>
<td>189.448</td>
<td>264.5218</td>
<td>32.2115</td>
<td>7585</td>
</tr>
</tbody>
</table>
Plot Time Series for Extracted Statistics

- **plot_timeseries.py**
 - Select parameter and statistical measure
 - Plot decade by months
 - Plot decade by years or years by month
 - User-defined blacklist for outliers
Eutrophication in Winam Gulf
Anna-Birgitta Ledang, Daniel Odermatt

- Lake Victoria receives about 85% of all water from precipitation, and 85% of water loss is through evaporation.
- Winam Gulf however receives about 40% of all terrestrial inflow to Lake Victoria, including large loads of nutrients.
- Circulation is restricted to the 3 km wide Rusinga Channel.
Deep Water Hypoxia in Lake Biwa

Daniel Odermatt

- Lake Biwa is oligo- to mesotrophic, with increasing nutrient input by small, untreated tributaries especially in the South.
- The northern and southern basin are only 40 m and 4 m deep, respectively, and accommodate a high diversity of benthic grazing and detritus-feeding organisms.

Figure from Ohte et al. (2010)
Deep Water Hypoxia in Lake Biwa

Daniel Odermatt

- Vertical circulation is vital to sustain deep water oxygen levels
- In autumn 2007, investigations with an AUV revealed more than 2000 dead Gobi fish and lake prawns on the benthos
- Low oxygen concentrations and heavy metals mobilized under anaerobic conditions were identified as the cause of the die-off
- Insufficient surface cooling in early 2007 and persistent stratification is assumed to be the driver of this hypoxia

In situ data (solid lines) from monitoring survey database, Kyoto University Center for Ecological Research
Fish Ecology in Lake Vanern

Petra Philipson, Alfred Sandström

- Multivariate regression trees were used to link acoustic survey and fish count data from Hjalmaren, Malaren, Vanern and Vattern to EO products, water depth and distance from shore.

- Data is repeatedly split into a pair of clusters using the driver variable that allows for minimal variability within clusters.
Fish Ecology in Lake Vanern

Petra Philipson, Alfred Sandström

- In littoral areas water depth, CHL-a and CDOM explain a significant part of fish assemblage variations
- The most determining habitat property is water depth shallower or deeper than the median thermocline at 12.2 m
- Habitat-specific CDOM levels are the second main driver