

Mapping water bodies exploited multi-sensors and multi resolution optical and SAR data: gained experience from plain flood monitoring in Western Europe and Asia

Hervé YESOU

Claire HUBER, Henri GIRAUD , Mathias STUDER, Sadri HAOUET, Paul de FRAIPONT Maria VIRELLI & Yves Louis DESNOS

SERTIT, France, ASI, Italy, ESA-ESRIN

Mapping Water Bodies from Space - MWBS 2015 ESA ESRIN, 18-19 March 2015 Context: better understanding in of water bodies dynamic (water cycle and services)

- Test site Alsatian plain flood & Yangtze intermediate basin
- Dynamic of water bodies
- EO time series description/access
- Sentinel 1 versus Envisat ASAR
- Challenging problems, submerged /floating vegetation, mud banks
- Water bodies from time series
- Validation via multi resolution approach
- Indicators derived from times series
- Perspectives recommendations

Mapping Water Bodies from Space - MWBS 2015 ESA ESRIN, 18-19 March 2015

Test sites: Poyang Lake (PR China), Alsatian Flood Plain (Fr)

Poyang lake, Monsoon lake 15 years of monitoring

Alsatian Flood plain, less regularly monitor area, but lot of experiment, SPOT Take Five, Pleiades, CSK, Terra SAR, Mapping Water Bodies from Space - MWBS 2015

Poyang study context: Yangtze middle watershed

- Diversity of types of water bodies, narrow reservoir, large flat depression, etc ..
- water surface extent behaviors, depending of the season, size factor 5
- huge water height variations from 40 to 1 m depending of the water body

3 Gorges Reservoir (3G) reservoir : 1084 km² 2 to 2.5km width, 40m of annual water height variations

Yangtze river: 1-2 km , 9-12m of annual water height variations Dongting Lake: 500-2500 km², 9-12m of annual water height variations Poyang Lake: 700-3300 km², 9-12m of annual water height variations Anhui lakes: >10-100 km² , 1-3 m of annual water height variations

Context: Yangtze river's monsoons lakes monitoring

- 6000 Lakes, pound, reservoirs
- •25% freshwater of SE Asia
- •1 ha to 3500 km²
- •Large flooded lakes: 30-40 % of area, 2 majors and 4 small ones
- •Water services:
- 330 000 000 inhabitants
- Public health
- Biodiversity stakes
- Whithin climate change and water management (3GD)

Acknowledgement

No product without raw material !!!!!!

Major pillars :

- ESA MOST DRAGON (2004-2016 and more !!) CC CSA
- CNES télé-épidémiologie and SWOT (RTU + Take_5)

Others very valuable contributions:

- ASI for CSK time series 2010-2011, 2013-2015
- DLR for Tandem X and multimode data access
- Deimos
- etc

7'270'E

Water monitoring Alsatian Plain flood TAKE5 SPOT4 exploitation

Surfaces (ha) of water bodies extracted on SPOT4

Possibility to follow very small wetlands complex presenting in fact an unexpected/unknown (?) dynamic.

Interest of High temporal revisit for monitoring hydrological behaviors

Intra annual changes

Interest of High temporal revisit for monitoring hydrological behaviors

Inter annual changes

1626 km^2

CSK 2013-10-01

Interest of High temporal revisit for monitoring hydrological behaviors

Inter annual changes

2718 km^2

Sentinel 1 2014-10-03

Monitoring water bodies based on EO resource 2000-2012

Request to a secured resource allowing to monitoring large areas with a short revisiting time (10 days)

Near Half SAR and optic: 2000-2012

=>ENVISAT, Beijing1 and HJ thanks to DRAGON

⇒ + opportunistic approach to insure revisit,
 AO JAXA, DEIMOS, TakeFive, AO CSK ASI
 ⇒ Open EO database, MODIS, Landsat

Monitoring water bodies based on EO resource 2012-2014 ...

Request to a secured resource allowing to monitoring large areas with a short revisiting time (10 days)

Moving from MR to HR \Rightarrow , SPOT 4 TakeFive, HJ1A, preparing Sentinel 2 venue

⇒ Archive TerraSAR, New modes TerraSAR TandemX
⇒ Cosmo Skymed from ASI (supporting Envisat Gap)

\Rightarrow Sentinel 1

Integration of Sentinel 1 data within the monitoring scheme

Poyang lake is one of the rare site that is covered by systematic acquisition as viewed in the Sentinel Scientific Hub

SPACE SERVING THE EARTH...

15

Comparison Sentinel1 IWS With ENVISAT ASAR WSM and APP modes over Poyang Lake, PR China

ASAR WSM ENVISAT 400 km 26° - 41° ENL 10.5 Sentinel 1 250 km

30° - 45 ENL: 4.9

ASAR APP S4 ENVISAT 88 km 31-36° ENL 1.9

Land/water surfaces discrimination Major land use such as town, network, infrastructure, agricultural parceling

116'30'E

Envisat ASAR APP - 12.50 m

115'570'

115'57'0'E

Acquired the 18/09/2005 - HH-HH-HV

116'00'E

116'3'0'E

Ship detection Land/water surfaces discrimination Major land use such as town,

Sentinel-1A - 10 m

Accuired the 12/05/2014 - HH-HH-HV

118.90%

Recognition of water surface water flooded vegetation and floating vegetation

Recognition of water surface water flooded vegetation and floating vegetation

Sentinel1 VV less apparent water than on VH

Recognition of water surface water flooded vegetation and floating vegetation

Sentinel1 band C VV = CSK band X HH

Recognition of water surface water flooded vegetation and floating vegetation

Nymphoides Pelatum

Mapping Water Bodies from Spa

Recognition of water surface water flooded vegetation and floating vegetation

CSK 0224-0726-0928- 2014

Shenjiang Lake Anhui Pr, PR CHina

2000

Meter

2000

Recognition of water surface Wet area after water redraw

Recognition of water surface Wet area after water redraw

Transitional areas between dry land and open water surface in very flat areas

SPACE SERVING THE EARTH...

Water extraction from Sentinel 1, CSK, HJ1A Time series over Poyang Lake and Anhui lakes, PR China

HR exploited dataset: HJ Chinese satellite 400 km swath: large diversity of lanscapes

HJ1 A/B Daily or every 2 days

400*400 km 30m

30000

meters

30000

HR exploited dataset: HJ Chinese satellite 400 km swath: large diversity of lanscapes

High variability of spectral answer and contrast land/water Shenjian Lake, Anhui Province

Poyang lake CSK time series January to December 2014

Validation approach Multi source & multiscale optical and SAR

SPOT4/ HJ/Deimos and Pleiades HR TerraSAR, Wide ScanSAR to Staring Spot Light

VHR SAR (CSK, Multi mode TerraSAR) or VHR Optical (Pleaides, Kompsat) imagery allow to validate the HR derived flood extent

Validation of water bodies delineation Based on HR/VHR multi resolution approach

Stripmap (SM) / Spotlight standard (SL) / Staring Spotlight (ST)

Wide Scan SAR 200*200 km², 30 m Strip Map mode : 30*50 km², 3m SpotLight mode : 5*10 km², 1m Staring SpotLight : 3*4 km², 25 cm

Image © 2014 GeoBasis-DE/BKG Image © 2014 AeroWest Image © 2014 DigitalGlobe

New TerraSAR X Starring Spot Light images

Classical TerraSAR X Strip map images

2015-03-03

Comparison TS Staring Spot Light and Strip map

Temporal effect and resolution a³⁹tefact

Multi resolution analysis for water extraction validation

Muttersoltz, Alsatian flood Plain

2015-03-05

Ends: Water surfaces monitoring

Analysis of temporal variations of water surfaces from 2000 to 2014. Our core information is 15 years of surface extents with a high frequency scoring (10 days in average)

Mapping Water Bodies from Space - MWBS 2015

Water surfaces monitoring

Both in spatial and temporal domains

Analysis of temporal variations of water surfaces from 2000 to 2014 Normal hydrological year, wetness and dryer successions

=> Trends analysis in conjunction with meteo parameters ...

Mapping Water Bodies from Space - MWBS 2015

Water extent monitoring: Submersion time, occurrence maps

Water extent monitoring: Submersion time: residual analysis

Water extent monitoring: Submersion time: residual analysis

Complementarity SAR Optical HR

High complementary-synergy

Temporal:

- Long term few weeks/month with none exploitable Optical data
- Short term: increase the revisit, that interesting because evolution in less than 5 days (multiscale)
- => More accurate indicators (be careful with trends motions...)

Thematic:

- Optical :
 - Vegetation on optical: flooded, submerged floating vegetation
 - Water quality
- \Rightarrow Be careful with scale of analysis (Vegetation versus Modis, versus SPOT... 20% break each time...)..
- ⇒ Water bodies monitoring request regular and long term time series, continuity and consistency are key words

Perspectives and recommendations

Sentinel1 : systematic VV/VH rather than HH/HV !!!!

More global coverage.. Poyang is covered by S1 but only one major sites over hundreds ,

Sentinel 2: the systematic will be really systematic all around the world .. And at which time

Pursuit of the synergy approach with Sentinel3 OCLI (and other L8, Proba 100m) ,

Integrate as much as possible others source of information , such as water height (Jason, Altika, coming S3 and Jason CS before SWOT 2020)

Mapping Water Bodies from Space - MWBS 2015

Thanks you

Herve YESOU SERTIT

sertit

Université de Strasbourg Institut Telecom Physiques Strasbourg Parc d'Innovation 300, Bd Sébastien Brant BP 10413 F - 67412 Illkirch Graffenstaden +33 (0)3 68 85 46 43 (Tel) +33 (0)3 68 85 46 46 (Fax) http://sertit.u-strasbg.fr